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DIFFERENTIAL GAMES WITH INTEGRAL CONSTRAINTS ON DISTURBANCES* 

M.D. LOKSHIN 

A positional differential game for a linear system is considered. This 
game differs from games previously studied in the literature in that it 
does not assume geometrical constraints on the controls and the 
disturbances, but instead imposes integral constraints on the samples of 
the disturbance. The existence of an optimal strategy is established 
and a method of construction is suggested. Counterstrategies are 
constructed that generate the worst-case realizations of the 
disturbance. It is established that this differential game has a value 
and a saddle point. 

1. Consider a differential game for a system whose motion is described by the 

x' = A (t) z + B (t) u + C (t) v 

u E R’, VE R”, to< t <S 

equation 

(1.1) 

where x is the n-dimensional phase vector, u is the control vector, v is the disturbance 
vector, A (t), B (t), and C (t) are continuous matrix functions and t, and 8 are fixed 
instants of time. Each possible realization of the disturbance 
is Bore1 measurable and satisfies the constraint 

lJ [t, [.I 8) = {v [tl, t, < t < 6) 

I,&l* 6) <v [toll I, (a, B) = ‘i (v [tl . y (t) u [tl> dt 
a 

Here v [toI > 0 is a given number, <a.b> is the scalar product of the vectors a and 
b, y (t) is a matrix function continuous for t,,< t<O, and <v.Y(t)v> is a positive 
definite quadratic form. A strategy is any function 

u (.) = {u (& 2, v, a), t, < t < 6, 5 E R", 0 < v < v [t,1, E > 0) 

Assume that the strategy 
0 Q v [t,l & v [t&, is realized, 

u (s) has been chosen, the position {t*, z+, v It,]}, t, E It,,,*), 

1 k+l, 
the value E> 0 has been chosen, and the partition A. {ti}, i= 

has been fixed for the interval 
z’rt*‘r:‘l 61 = (5 It1, t, < t < 6) 

It*, 61, t, = t,, . . . . tk+l = 6. Then the motion 
is defined for 1, < t<6 as the solution of the stepwise dif- 

ferential equation 

i It] = A (t) x [tI + B (t) u (tiy z [tiI, V Iti], E) + C (t) V ItI, ti < t < 
litlr i = 1,. . ., k 

where the realization v[t* [.I61 may be any measurable function that satisfies the constraint 

1, (t*? 6) Q v b*l (1.2) 

For any admissible realization v[t, [.I61 l1.2), the function 
determines the remaining disturbance slack at time t, 

v It], 1, < t s 6, that 
is defined by the equation 

v [tl = v It,1 - I, (t*, t), t E it,, 61 

The function v[t] can be determined during the control process by analysing the motion. 
A counterstrategy is any function 

v (.) = {v (t, 2, v, a), 2, < t < 6, z E R", 0 <v < v [t,], a > 0) 

Assume that the counterstrategy 
realized, the value a>0 

V(.) has been chosen, the position {t*,z*, v it,]) is 

the interval It,, fil. 
has been chosen, and the partition Au {ti} has been fixed for 

Also assume that the control u it, 1.18) 
able bounded function. In this case, the motion 

acting on the system is a measur- 
I [t* [.I81 is generated as follows. 

instant tjCZ A0 {ti} (which will be specified later), the part 
Up to the 

x 11, [.I t,l of this motion is 
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defined as the solution of the stepwise differential equation 

5' [t] .-= .4 (t) z [iI i_ B (1) u It1 -+- c (t) u (ti, 2‘ I&l, Ir It& t.), ti < t < (1.3) 

li+lr i =.= 1: . . ., j - 1 

The instant tj is determined from the condition 

From (1.4) it follows that there exists t* CZ [tjz tj+J the substitution of which for the 
upper integration limit in (1.4) reduces the left-hand side of the first inequality in (1.4) 
to zero. The motion z[tjl*ll*l is defined as the continuation of the motion x[t, I.1 tjI from 
the condition that corresponds to Eq.il.3) in which TV is replaced by tj and tit, by t*. 

For t* <t<-<, when the disturbance slack has been fully exhausted, we assume that the 
disturbance does not affect the system and the motion ;c[t* [.I61 is determined as the solution 
of the differential equation 

5' [tl = A (t) z Et) -k B (t) U It1, t* :< t < B 

Let the functional 

be given. Here jx 1 is some norm of the vector x that for x E IV satisfies the condition 

Ix 1 <d I z le,d)U, where the symbol I . Is here and in what follows stands for the Euclidean 
norm; (u.cU (t)u) is a positive definite quadratic form, and Q (t) is a continuous matrix 
function. 

Let la, S>U, be a partition A (ti) such that li+l - ti-<6,i : I,..., k. Fox the 
strategy u (.) and the initial position {t*,.z*, vk,)), the guaranteed outcome is defined as 

and for the counterstwategy Y(,) and the initial position it*, z*, v [&I], the guaranteed out- 
come is defined as 

Here the lower limit is over all measurable bounded samples n It, i.lSl. 
The strategy no (.) is called optimal if c (a0 (.), t,, .z*,v i&I) f min,(.j c (U (.), 1,, 5*, Y L&J) 

for any initial position {1,, I*, VI&I], and the quantity CO (t*? 2*, v It*]) '12 c (ItO (.), t,, r*, Y Il*l) 
is called an optimal guaranteed outcome for the position {Q,x*,Y It,]]. We have the following 
proposition. 

Propcwitian 1.1. For any initial position {t*,Z+, y [t,l) and any counterstrategy LY (a), 
we have the inequality 

c (v (*), t,, 2*, v It*]) <<Co @*, z*, Y [&I) 

In this paper, we establish the existence of an optimal strategy u"(.) and a counter- 
strategy v"(.) that satisfies the equality c (Y" (.), t,, zu,v it,]) = co (2,, X*,V [&I) for any position 
{&*t 2*X v k*l}. By Proposition 1.1 this means that our game-control problem has the value cO(t,, 
&, y !&I) and the saddle point (G" f*), u" (+)}. 

A distinctive feature of our problem is that it allows values of u it] ~[tl as large as 
desired and the disturbance is bounded by integral constraints. 

2. Consider the model 

w* S 1% (7) uj +- B (a) EL + c (2) c 

W;,, -2 (4J.Q (T) U>, u Cz R', V Cz X' 

Putting {WI, . . ., w,, x,,+l} = z E Pi1 , we rewrite (2.1) in the form 

(2.1) 
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where A,(T) is a (n + 1) X (n + 1) matrix. On the motions a ]7* l..lfil = {w IT* [.lSl, wttt1 b*, 

[.]@I} of the model (2.2) generated by the samples n[~,[.]6), v[t* [.]I?), consider the functional 

y,, = y. (Z [T* [.ltil, U [T* 1.16)) = 1 ZL’[611 + ~C>,+I,* i- 1, (TX:, 6)~ 
‘C* f [to, a), Wn+1.* = wt,+l [Ta:l 

which corresponds to the functional Y (1.5). The realizations v IT, I.10) satisfy the con- 
straint (1.2) with t, = T*. 

Fix some q> 0 and temporarily impose an additional constraint on the sample u [r* ].]a): 

I u [rl le < 4, T* < T < 6 (2.3) 

Assume that some position {T,, z*, v [r,l) has been realized. Take a number p. The rule 
that associates with each piecewise-constant realization u[r* [.]a) a piecewise-constant 
realization u[z, [*le) which satisfies (1.2) for t, = T* and also (2.3) will be called a 
(fi, Y [t,l) - Q -procedure if v ]T* [*IS) is not anticipated by uIr* [.1+)/l, p.223/ and any 
motion z [T* [.I61 generated by this rule satisfies the inequality 

yo (z [.t* [.I*13 u h, [.I@)) > p 

Take an arbitrary position {% 2, v) and introduce the quantity (a is the existential 
quantifier) 

p(q) (Z, z, Y) = sup p, B E Btr,r,V) = Ifi: ?I@, v)- Q procedure] (2.4) 

The function P(4) (.) has the following properties. 
10. For any numbers VI7 v? such that 

0 Q vr < v Uol, 0 < v2 < v I&II, v2 > v1 

we have the inequalities 

p(q) (t, z, vz) > p(q) (t, z, vJ, p(q) (7, z, vz) - $4) (T, z, VJ < A* I/yvl, 
z E [to, 61, z E R"+l 

where A* is a positive constant which depends on the form of the matrix functions A (t), B (0, 
c (t) and Y' (t). 

20. Continuity in t and Lipschitz condition in the variable z: 

I P(q) (T, Z.27 v) - P(4) (t, Zll v)I < h 1% - Zl le 

~1, z, E R”+‘, z E [to, 61, 0 < v < y [t,] 

where the constant h is given by the equality 

h=d 1/2(1 -+ max IlX(t,r)II) 
1.a. se 

Here X (t, t) is the fundamental matrix for the equation 
Z)Y let Y E R”, I Y le < 1. 

Wdt = A (t)s, /I X (t, T)II = maxy 1 X (t, 

39. p(q) (t, z, v) = p(q) (z, {v, O}, Y) + W,,,. 

4O. p@)@,z,v)= l~l+Wn+l, where 1. I is the same norm as in (1.5). 

50. u-Stabitity property. For any position {t*, z It,], -v(t,l}, any number e > 0, r* E (z,, 
91, and any piecewise-constant function .u, [t,[.]~*] satisfying the condition 

I u* [?I Ic < q, t* =g ‘c < z*, It,* CT*, T*) 4 v [%*I (2.5) 

there exists a piecewise-constant realization 
Z [z, [*IT*1 

e* [z, [-It*1 such that the corresponding motion 
satisfies the inequality 

p(q) (Z*, 2 [t*l, v [t*l) .< pcq) (T*, Z [%,I, 'V [t,l) + E (r* - z.,& 

v [PI = v Iz*l - I, (7*, z*) 
(2.6) 

6". v-S'tabizity property. For any position {z*,z [t.,l, v [r,l}, any number E>% T* E 
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(.C,, 61, and any piecewise-constant function u, [z, [*It*], there exists a piecewise-constant 
function U* [z* [*lt*J satisfying the condition (2.5) so that the corresponding motion z]t, [.]t*] 
satisfies the inequality (2.6) with < replaced by >, and E replaced by --e. 

It can be shown that the limit 

p (a, z, V) = lim p(Q) {r, 2, Y) (2.7) 
9-+- 

exists for any position {z, 2, v>. 
The function p(v), like the function p(q)(*), has properties lo-4". Arguing along the 

lines of /2/ allowing for equality (2.7) and properties 2"-6" for the function p@)(e), we 
can establish the following result. 

theorem 2.1. For any initial position {~*,z*,Y It,]) of system (l.l), we have the equality 
co (t*> K+, Y ]t*l) = P (t*, {x*, 0): 1' f&,1). 

The optimal strategy u"(e) is constructed as a function of the variables -(t, t, \', s} in 
accordance with the condition 

(l".R(t)z~~) -]- 1,+r (u".(D(t)uO)= min {Idem(u*--,U)} 
lERP 

p (f, {r--I”, O}, Y) - lieI = min ]p(t, (5 - 6 O), v) - E,,+IJ 
iL h,,ll 

(2.8) 

where Idem stands for the expression on the left-hand side of the equality with the change of 
symbols specified in parentheses. For all t E [to, ti], x E Rn, 0 <V < v [to], s>U 
inequality (T denotes the transpose) 

we have the 

3. Let us now construct a counterstrategy that generates the worst-case 
the disturbances. We have the following lemma. 

(2.0) 

rea 1 izations of 

Lemma 3.2. For any position {r,Z,v} of model (2.2), we have the inequality 

p@) (r, z, Y) > p(b) (t, z, Y), a : 6 

Depending on the form of the matrix function c(t), t,,<;t,<@, in 11.1) and (2.11, we 
distinguish between non-degenerate and degenerate cases. 

1. If for any a>0 we have the inequality 

m;x]]C(t)l]>O, ]lC(t)ll= max IC(t)Ylet tE[*--Tf+l 
yERS, l11,Cl 

then this is a non-degenerate case. Let us consider it in more detail. 
We can prove the following proposition. 

Lemma 3.2. Assume that the sphere D,, = {ix It< p, SE R”) and the interval [to, a] C 
]tp, @I, a < 8 have been chosen arbitrarily. Then there is a number q” = q”(p, a) such that 
for all q> q” we have the limit 

p(4) (6 (5, O}, VP) - $4) (t, (5, o>, VI) > FcLu +1. -.- y,) 

Fap > 0, v2 > vl, v1 65 [O, v It& v2 E IO, y [&Jl, z E D,, t E Ita, al 

Here F,,,-+ 0 as a +6. 
Using the definition of (p,v)-Q-p rocedures for the position {-c,z,Y} of the model (2.2) 

and properties lo, 2" of the functions P(P) (.), we can prove the following lemma. 

Lemma 3.3. Assume that a certain number aE It,,,*) has been chosen. Then the sequence 
of functions p(q) (t, {z, O},v) uniformly converges to the optimal guaranteed outcome function 
c" (t, 5, v) on the set fit,, a] X Rn X ]a, v ]&]]] as Q++W. 

Take some nunber a>0 and construct the counterstrategies u,(e) (.) according to the 
condition 

(Z".C (t)@(1, 5, Y, E)) - 1,+1 (U$!' (t, 5, V, E) Y (t) Ckq’ (t, a, V, E)) = 

min {Idem (f,s, v, E)-o)} 

rrd 
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p(Q)(f, {x- F,O}. v- ZY1+1) = max [p(@(t, {s-I, O}, v - &,+I)] 
Ii* k+1) 

I I I es + 1”,+, < (8 + E (t - to)) exp (2h (t - to)), t E It,, 6 - al 

z+p (t, I, Y, E) = 0, t E (TY - a, Sl 

(3.1) 

(3.2) 

If we argue as in /I, 2/ using Lemmas 3.2, 3.3 and property 6O for the functions p(*f (* ), 
then we can prove the inequality 

c ltJc6(‘) (‘19 t*, X*3 v It*]) > Co (t,, X*. 2’ [t*l) - [l/l:(q) -+ A, I/&Z], 
A* > 0, II, 62) > 0 

(3.3) 

for any position {t*. I*, v I&l}, t, E I&61, t+ E R", v It,IE IO, \* I&& in (3.3) the function 4 1') 
satisfies the condition lim$(q) = 0 as q++m. The bound (3.3) proves the following prop- 
osition. 

Theorem 3.1. For any t>O there exists a counterstrategy UC(-) that guarantees the 
outcome 

for any initial position {t*, I*, v I&l). 
Using Lemma 3.1, Theorem 3.1, and relationship (3.3), we can establish that the counter- 

strategy v"(.) that guarantees the outcome co (C 5, v) for any initial position {t,",") of 
system (1.1) is constructed according to the condition 

0 
(l"'C(t)u"> -lIn+l(LJ ".'tF(t)~') = min (Idem(v"-, u)) 

!ERS 

p(Q@)) (1, {z-l", 0), v- ii+,) = max [IMe)) (t, (z- 1, 0), v - 1,+1) 
1~.~,,+11 

1 I I.2 + E+I < (E + e (t - toif exp (2h (t - t,)), t E Lb 6 -a +)I (3.4) 
v” = 0, t E (6 -a (E), @] (3.5) 

where CC(.), q(a) are any functions that satisfy the conditions CL(E)> 0, q (E) > 0, lim a (E) = 

0, iim g (8) = +oo as e-to. 

2. If the matrix function C(t), t,,< t,<@ does not satisfy the conditions of the previous 
case, then 

I)* = min Iq: mast 11 C (t)ll = 0. q < t < 6, q > toI 

exists. 
This is the degenerate case. The effect of the disturbance on system (1.1) is restricted 

to the time interval [&,q*l. Lemmas 3-2, 3.3 and Theorem 3.1 remain basically unchanged and 
the counterstrategies @J(.) u" f.) are constructed as in the first case. The only difference 

is that the finite time 6 in Lemma 3.2, 3.3 and in (3.1)-(3.5) is now replaced by q*. There- 
fore, in this case, we construct a counterstrategy that guarantees the outcome co (t, 5, tS) for 
any position (t,z,V) of system (1.1). 

4. Let us consider a typical example. Suppose that the controlled system is described 
by a system of two scalar differential equations 

Xi' = kll, +- ne%,, t, < t Q 6, i = 1, 2 (4.1) 
where k, n, a are positive constants, z = {X1, %I is the phase vector, X = {U,r %I is the 
control vector, and u = (q, %) is the disturbance vectors; t0 and 6 are fixed. Realizations 
of the control uItoI*161 may be arbitrary bounded measurable functions; each realization of 
the disturbance ul& I-WI satisfies the constraint 

Assume that the initial position k*,r,,v IT& has been chosen and the performance func- 
tional is given in the form 

I'=IzIWle+ i l~PIlgSd~ 
?s 

Using the results of /3/ we can establish that ~~(~~,r.,vIrJ) is determined by the equality 
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cot%, J’*., v [x*1)= im~pt - I*> -I- qp-5, v[Q) (4.2) 
B- 

The function q&v) is determined for each RZ,Y (1 "I&I, O<V <v[L~J) from the condition 

where 9 C.1 = N (.)I* denotes the upper concave hull of the function q(m), [uz)~<I. Here the 
supremum is over all measurable functions V [.I such that 

In this example, for each m,y there exists a function 

o,, I.1 = V&,, 1% t* d r d $) (4.4) 

such that the maximum in (4.3) is attained. Solving problem (4.3), we can show that the func- 
tion QfnV[.l is defined for each rn,~ according to the values of 

tm* = (La)- in [(k%,)ln"l 

ii,, = {(I m 1." - l)P + [(I m ic* -- l)%" + 32an"v (,*a* - [ m ie* e2=)l"')r(isa) 

by the following relations. 

If at some instant z" the disturbance slack has been completely exhausted, then we take 
o[r] = 0, so.< a <a. 

The control process for the given object was simulated on a computer for the following 

parameter values: 
a = 2, s; 2 1, n AZ= 2, *O = 0, 6 = 1/2, T*_Z I@ 

23 [r*l .= 1, z* [r,] = 'I,, V [T,] = 4, t) = 0.03 

T 

2 In Fig.1, the solid curve represents the motion generated 
by the optimal control and the disturbance n.=@.Ssins}; the 
performance functional value is p== 3.02; the optimal guaranteed 
outcome for the position (0, {1,'!,),4) is c" I= co (0, (1. V,), 4) = 6.05, 
i.e., Y<.c"+ 

# i 3 ‘5 s, The dashed curve represents the motion generated by the 

optimal control and the worst-case disturbance; the performance 
functional value is y = 5.38 z co. 

The dash-dot curve represents the motion generated by the suboptimal control u = {cosr,sirir) 
and the worst-case disturbance; in this case, y = 7.09 > c'. 

In the last two cases, v[$]zO, i.e., the initial disturbance slack for Y i%*f is com- 

pletely exhausted. 
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NEW SOLUTIONS OF HO-DIMENSIONAL STATiONARY EULER EQUATIONS* 

O.V. KAPTSOV 

A generalized method of separation of variables is used to obtain new 
particular solutions for the stream function describing two-dimensional 
stationary motions of an ideal fluid. patterns of streamlines are 
given. The proof of the stability of some of the solutions is based on 
a theorem due to Arnol'd /l/. 

1. In the case of the two-dimensional stationary motion of an ideal fluid, the stream 
function *((5,y) satisfies the equation 

**z + *r* = 0 (9) (i-1) 

where o is the vorticity. We will seek the solutions of 11.1) using the method of general- 
ized separation of variables: 

11, = a (f (2) -t g(y)) (1.2) 

The problem arises .here of finding the functions o, a, admitting of non-trivial separation 
of variables, i.e. a separation in which neither of the functions f,g is a polynomial of 
degree two or less. 

Substituting expression (1.2) into (1.11, we obtain 

U, + gy& a' + (i," + gU8)a" = @ 0 + g) 

where 4, = o-a. Since a' is not zero, the last equation can be written in the form 

x+fJY=F(z) (1.3) 
X = I,, -i- &i,, y = f,a + &a, 2 = f + g 

fi = a”la’, F = Cala’ 

We shall call the solution of Eq.tl.3) non-trivial, 
of non-trivial separation of variables, 

if the corresponding Eq.fl.1) admits 

Differentiating Eq.tl.31 with respect to x and y we obtain a relation which can be written, 
after dividing it by f,g, F in the form 

2g' (Z)X _t B" fzfY = F" (2) (1.4) 

Eqs.(1.3) and (1.4) can be regarded as a system of linear algebraic equations in the 
unknowns X, Y. The system is not inconsistent, 
dependent, 

provided that the equations are either linearly 
or uniquely solvable in X, Y. In the latter case we arrive at the relations 
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